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Although autonomous systems are becoming more and more capable of performing
tasks as good as humans can, there is still a huge amount of (especially) complex tasks
which can much better be performed by humans. When making such decisions however, it
might show that in particular situations it is better to let a human perform the task, whereas
in other situations an autonomous system might perform better. This could for instance
depend upon the current state of the human, for instance measured by means of ambient
devices, but also experiences obtained in the past. In this paper, a trust-based approach is
developed which aims at judging the current situation and deciding upon the best allocation
(human or autonomous system) to perform a certain task. Hereby, an experiment in the
context of controlling a set of robots to dismantle bombs has been performed, with focus
on multiple types of support. The results show that support by means of simply allocating
the task to the most suitable party gives superior performance.

1. Introduction

Nowadays, more and more complex tasks that were originally performed by humans are
being automated. This automation has become possible due to the huge advancements
in technological development. For instance, in the field of robotics a trend can be seen
that moves from robots that were completely controlled by a human to robots that handle
complete tasks autonomously (cf. (Parasuraman et al., 2000)). Although the choice for
automation might sometimes be clear-cut (e.g. robots mounting windows on car are far
more precise than humans) in other cases it might not be so obvious. For instance, it could
be the case that an automated system performs far superiorly in straightforward situations,
but in more complex situations a human might still perform better. Therefore, different
so-called levels of autonomy (LOAs) can be defined ranging from complete control by the
human to complete control by the autonomous system (see e.g. (Sheridan and Verplank,
1978)).

Currently, systems have been developed that try to accomplish an adaptive level of
autonomy, see e.g. (Parasuraman and Wickens, 2008). Such a system can take the form
of an advice system for a human operator, but can also be an autonomous system itself
that selects one of the LOAs. A key consideration when selecting one of these LOAs is
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the expected performance in a particular situation, both of the human and the automated
system. In order to create these expectations, a performance model should be built up.
Such a model should take previous experiences in similar situations into account, but can
for instance also incorporate a model of the current state of the human operator (e.g. is the
operator currently overloaded, or is the operator bored because he or she has nothing to do).
In order to feed such a model with information, techniques from the domain of Ambient
Intelligence can be deployed.

In this paper, a first step in this direction is made in the field of robot control. Hereby,
a computational trust model (see e.g. (Sabater and Sierra, 2005)) is utilized to create a
support system for a human operator. This system maintains a trust model for both the
human operator and the automated system and derives which is better equipped to handle
the current situation. These trust levels are based on a history of experiences. The setting
that is investigated does not concern a single but multiple robots that need to be controlled
simultaneously, thereby creating a situation where the human operator is simply not able
to control all robots manually. In an experiment different forms of support are provided,
ranging from displaying the trust level in both the autonomous system and the human op-
erator, providing advice on who should take control of a particular robot, to completely
autonomous assignment of control. Of course, hereby the fact that the human operator
cannot control more than one robot at the same time is taken into account.

This paper is organized as follows. In section 2, the proposed support model is de-
scribed. The hypotheses about the application of the support model are listed in section 3,
and the method used to test these hypotheses is described in section 4. The results are given
in section 5. The paper is concluded with a discussion in section 6.

2. Support Model

A support model is proposed that can be used to aid a supervisor with the supervision
and control of multiple robots. The support model consists of two main parts: a set of
trust models and an autonomy reasoner. With these parts, the support model is able to
offer different types of support. The support model is used in the context of supervisor S
monitoring n > 1 robots R1, . . . ,Rn. For each robot Rn, the support model has two trust
models: one trust model TRn to predict robot Rn’s performance, and one trust model TSn to
predict the supervisor’s performance when they are controlling robot Rn. The autonomy
reasoner uses the trust values from the trust models to decide which robots are allowed to
function autonomously, and which robot’s control should be shifted to the supervisor, if
any. A graphical overview of the support model is given in figure 1.1(a).

2.1. Trust models

The support model uses multiple instantiations of the same trust model to calculate the trust
it has in the supervisor and the robots (together: agents) regarding a certain task. The trust
model calculates the trust Tj(s, t) that the support model has in trustee j ∈ {S,R1, . . . ,Rn}
at time step t, with Tj(s, t) ranging between 0 and 1. The calculated trust Tj(s, t) represents
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a prediction of an agents’ performance on the task.
With n robots, the support model uses 2n instantiations of the trust model. The perfor-

mance of a robot Rn is predicted using a trust model TRn . Similarly, the performance of the
supervisor when controlling each robot is predicted using trust models TSn .

The trust models use direct experiences and situations as input.

2.1.1. Direct experiences

At every time step t, each trust model receives input in the form of either a positive or
a negative experience, or no experience at all. Experiences are modelled in the support
model as entities without explicit value. To discriminate between positive and negative
experiences, each trust model remembers positive and negative experiences by maintaining
two sets (Pos and Neg). From these sets, two new sets (PosR and NegR) which contain only
recent experiences are deduced at each time step:

Pos = {x|x is a time step at which a positive experience was received}
Neg = {x|x is a time step at which a negative experience was received}
PosR = {x ∈ Pos : x > t−θt}
NegR = {x ∈ Neg : x > t−θt}

(1.1)

The parameter θt defines after how many time steps an experience is no longer counted
as recent. To let experiences with an agent influence the trust in that agent, the value of
recent experiences needs to be quantified. This is done by looking at the ratio of positive
experiences to negative experiences at each time step:

ε j(t) =

{
#PosR

#PosR+ωneg#NegR if #PosR+#NegR > 0
0.5 otherwise

(1.2)

Here, ωneg is a weight that can be used to balance the importance of negative experi-
ences.

2.1.2. Situation

Combinations of features of the robots’ environment, together with known properties of the
robots, can form cues for the robots’ expected performance. Such features make up situa-
tions. In the trust models, scores are assigned to situations so that situations with a positive
outlook add trust, while situations with a negative outlook subtract trust. The specific situa-
tions and their scores are defined before any operation as possible combinations of features
of j’s environment. The defined situations are assigned scores that indicate the outlook
offered by the different situations, ranging from negative (a score of 0) to positive (a score
of 1). The trust model for j obtains the score of j’s situation with a lookup function:

σ j(s, t) =
{

The score of s at t if s is a defined situation
0.5 otherwise

(1.3)
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The t parameter is used to reflect the declining or increasing predictive value of a sit-
uation as time passes. For example, if a robot spends too much time in a situation with
a positive outlook (compared to the expected task completion time), trust in the robot de-
clines as the amount of time spent might indicate a failure.

2.1.3. Combination of the input

Direct experiences with j and j’s situation at time step t have to be combined to form the
new input I on which the trust in j at time step t is based:

I j(s, t) = ωIσ j(s, t)+(1−ωI)ε j(t) (1.4)

To be able to balance the importance of the experiences and the situation in the model,
weight ωI is introduced (0≤ ωI ≤ 1).

2.1.4. Final definition

The final definition of the trust model is as follows:

Tj(s, t) = λT Tj(t−1)+(1−λT )I j(s, t) (1.5)

A decay factor λT (0 ≤ λT ≤ 1) is added to control how strongly old trust influences
new trust.

With 2n instantiations of this trust model, the support model is able to predict the per-
formance of each robot, and the performance of the supervisor with each robot. These
predictions, in the form of trust values, form the input of the autonomy reasoner, which is
described in the next section.

2.2. Autonomy reasoner

The autonomy reasoner uses the trust values generated by the trust models to select (at
most) one robot at each time step. The selected robot is the most suitable candidate for a
shift in control, according to the support model. A number of criteria are applied on the
trust values that enter the autonomy reasoner.

First, threshold θ1 (0 < θ1 < 1) is defined as the trust value for each TRi above which
robot Ri should not be considered further for a control shift. This can be formalized as the
first criterion for the autonomy reasoner:

Criterion 1.1 (Good Enough). For each robot Ri, if TRi > θ1, remove Ri from considera-
tion for selection.

While the predicted performance of a robot may be low (≤ θ1), the difference with
the predicted performance of the supervisor with that robot might not be large enough to
warrant a shift in control. A new threshold θ2 (0< θ2 < θ1 < 1) is needed for the maximum
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difference in trust in the robot and the supervisor under which Ri is allowed to retain control,
when TRi ≤ θ1. The second criterion can now be defined:

Criterion 1.2 (Added Value). For each robot Ri, if TSi−TRi < θ2, remove Ri from consid-
eration for selection.

From the robots that are still being considered, the autonomy reasoner selects the robot
that is expected to perform the worst relative to the supervisor:

Criterion 1.3 (Lowest Relative Trust). Find the distinct argmaxi(TSi − TRi) and select
robot Ri.

It is possible that multiple robots are tied for the lowest relative trust, meaning the
Lowest Relative Trust Criterion can not select a single robot. In this case, the robot in
which the support model has the lowest absolute trust should be selected:

Criterion 1.4 (Lowest Absolute Trust). Find the distinct argmini(TRi) and select robot
Ri.

Again a tie is possible. In case of a tie with the Lowest Absolute Trust Criterion, a
random robot is selected:

Criterion 1.5 (Multiple Ties). Robot Ri is selected at random, and this selection is main-
tained until the next time step at which a robot is selected by application of any criterion
except the Multiple Ties Criterion.

If after application of the Added Value Criterion no robots are left for consideration for
selection, a shift in control is not deemed necessary by the autonomy reasoner. However, if
a shift is required, a selection can be forced by applying the Multiple Ties Criterion on all
robots.

A graphical overview of the autonomy reasoner is given in figure 1.1(b).

2.3. Support types

Three types of support using the support model are proposed: Trust Overview, Weak Adap-
tive Autonomy and Strong Adaptive Autonomy.

As the first type of support (Trust Overview), the trust generated by TRi for each robot
i can be presented to the supervisor. The autonomy reasoner is bypassed. The supervisor
must make all decisions about the robots’ autonomy themselves. The presentation of the
trust values can be used as a decision aid.

As the second type of support (Weak Adaptive Autonomy), the support model is used as
shown in figure 1.1(a). At each time step t, the trust in all agents is updated and a selection
is made by the autonomy reasoner. This selection is presented to the supervisor as the most
suitable candidate for a shift of control to the supervisor.
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As the third type of support (Strong Adaptive Autonomy), the support model is again
used as shown in figure 1.1(a). However, the selected robot is not merely presented to the
supervisor. The supervisor is forced to take control of the selected robot. At each time step
t, the trust in all agents is updated and a selection is made by the autonomy reasoner. The
choice of whether to take control of a robot to the supervisor is taken from the supervisor.
Instead, the control of the selected robot is forced on the supervisor by the support model.

3. Hypotheses

Several hypotheses can be formed on the effectiveness of the support types offered by the
support model that was described in the previous chapter.

The support model was designed to help the supervisor monitor robots and decide over
their autonomy. The support model, using trust models, should be able to more accurately
predict the performance of robots than the supervisor. Therefore, the supervisor/robot team
is expected to achieve higher performance in their tasks when the supervisor is supported
with either Trust Overview (H1a), Weak Adaptive Autonomy (H1b), or Strong Adaptive
Autonomy (H1c), compared to when the supervisor does not receive support. Specifically,
team performance is expected to be the highest when the supervisor is supported by Strong
Adaptive Autonomy (H2). In other words, the support model should be able to make better
decisions on the robots’ autonomy than the supervisor.

The support model uses trust models to predict the performance of robots. Since trust
is a subjective measure, the only baseline suitable for comparison is that of human opinion.
The support model’s predictions and decisions can be compared to human opinion in two
ways.

First, the trust the support model has in the robots and the supervisor can be compared
to the trust a human would have, when given the same information as the support model to
base their trust on. The expectation of increased team performance can be reduced into the
expectation that the trust models used by the support model are better at predicting perfor-
mance than the method used by humans. Therefore, trust generated by the support model
is not expected to resemble trust reported by humans (H3), given the same information as
input.

Second, the decisions of the support model on the autonomy of the robots (in the form
of the robots selected by the switching mechanism) can be compared to the decisions of the
supervisors in the same situations. For higher team performance with support from the sup-
port model, supervisors need to agree with the advice from the support model. Meanwhile,
supervisors’ agreement is expected to be low without support from the support model – if
it were high, there would be no added benefit in application of the support model. There-
fore, it is hypothesized that supervisors will agree with the advice from the support model
(under Trust Overview and Weak Adaptive Autonomy)(H4). When no support is given,
supervisors are not expected to agree with the selected robot the support model would have
provided.
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4. Method

4.1. Participants

Thirty-five experienced computer users participated in the experiment (M = 30.5 years, σ =
13.4 years, 17 female). Out of each group of five participants, four were randomly assigned
the role of supervisor.

4.2. Task

To test the hypotheses from section 3, a task has been designed in which four robots have
to disarm as many bombs as possible at a priori unknown locations at the same time in
separate virtual mazes. These four robots were supervised by a human supervisor. The
robots themselves were operated by humans (as opposed to an AI algorithm, which 1)
would have required more effort to program, 2) does not represent future AI capabilities
anyway, and 3) the focus of the experiment was on the supervisor’s task, not the robot
operators’ task). The robot operators were not able to communicate with the supervisor.
The supervisor monitored the activity of the robots and was able to shift the control of one
robot at a time to himself.

To add realism to the task (i.e., a certain degree of uncertainty of properly finding and
disarming bombs) there were three types of bombs in each maze: 1) bombs that only the
robot operators could see, 2) bombs that only the supervisor could see and 3) bombs that
both could see. In this way both parties (robot operator and supervisor) would have their
own capabilities and needed each other to take over control at different moments in time to
have an optimal performance.

A bomb was disarmed (positive experience) when a robot drove over it when visible to
its current controller. When a robot drove over a bomb that was not visible to its current
controller, the bomb exploded (negative experience). Both the operator and supervisor
were notified whenever one of these events happened. A bomb visible on the interface
constituted a positive situation. If no bomb was picked up after 20 seconds of seeing one,
the situation became neutral, and after 20 more seconds, the situation became negative until
a bomb was picked up.

Control of a robot was required in order to see bombs. Also a shift of control to the
supervisor required 5 seconds to process. These two measures were needed to prevent
the supervisor from micro-managing the robots too easily (i.e., quickly take over control,
disarm a bomb and release control whenever a bomb is seen by the supervisor).

Each maze contained the same number of bombs. However, the number of bombs
of each type differed per robot in each trial. This caused each robot to have a different
performance, giving the supervisor reason to pay close attention to the performance of
each robot. The less bombs visible to a robot, the more difficult that robot’s task is: it will
find less bombs to disarm and have a higher chance of causing explosions. The same holds
for the supervisor. Four combinations of bombs were used: one with most bombs visible
to the robot operator, one setup with most bombs visible to the supervisor, one setup with
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Table 1.1. Overview of the bomb combinations.

Combination Visible by Visible by Visible by
robot operator supervisor both

1 + − −
2 − + −
3 − − +
4 � � �

(a)

(b)

Fig. 1.2. (a) Robot operator’s interface. (b) Supervisor’s interface.

most bombs visible to both, and one setup with an equal division. An overview of the bomb
setups that were used can be found in table 1.1. The bomb combinations were balanced
between the robots in the four rounds under each supervisor. The balancing scheme is
shown in table 1.2.

The interface for the robot operators is shown in figure 1.2(a). It shows the robot’s
immediate surroundings. The operator was able to steer the robot through its maze using
the WASD keys. Bombs were displayed as a red circle. When the robot drove over a
visible bomb, a green indicator would appear for a short time, accompanied by a sound.
When the robot drove over an invisible bomb, a red indicator would appear, accompanied
by a different sound. When the robot was controlled by the supervisor, the same indicators
and sounds were used for these events.

The interface contained a large colored indicator that showed who was in control of the
robot: the robot operator or the supervisor. The indicator would switch between green (the
operator controls the robot) and red (the supervisor controls the robot). Control switches
were also accompanied by a clear sound.

The supervisor’s interface let the supervisor monitor the activity of the robots and take
control of one robot at a time. Support from the support model was also given through
this interface. The different implementations of these types of support (as explained in
section 2.3 is further described in section 4.3.1. The interface is shown in figure 1.2(b).
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Table 1.2. Bomb combination latin
square.

Trial number Bomb combination
under same for robot
supervisor 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table 1.3. Experimental design.

Supervisor Conditions

1 NS TO WAA SAA
2 TO SAA NS WAA
3 WAA NS SAA TO
4 SAA WAA TO NS

4.3. Design

A 4×1 within subjects design was used. The single independent variable used in the de-
sign was the type of support offered by the support model. This resulted in four conditions,
named after the support types: NS (No Support), TO (Trust Overview), WAA (Weak Adap-
tive Autonomy), and SAA (Strong Adaptive Autonomy).

The order in which the conditions were presented to the supervisors were balanced with
a latin square, as shown in table 1.3.

4.3.1. Independent variables

The single independent variable that was manipulated in the experiment was the type of
support offered by the support model as explained in section 2.3. Figure 1.2(b) shows the
’Weak Adaptive Autonomy’ condition, which shows all components used in all conditions.
Details specific to each support type are given below.

No Support Under this setting, the supervisor received no support from the support
model. The supervisor had to measure each robot’s performance manually by paying atten-
tion to the red and green indicators that accompanied disarmaments and explosions. The
supervisor was able to take and give back control of robots at will.

Trust Overview Under this setting, the level of trust the trust models of the support
model had in each robot was presented to the supervisor as a colored border around the
window with each robot’s activity. The color of each border represented the level of trust
the support model had in that robot. The borders blended gradually between red (low trust),
yellow (medium trust) and green (high trust). The supervisor was able to take and give back
control of robots at will. The supervisor was instructed to consider the colored borders as
performance predictors.

Weak Adaptive Autonomy Under this setting, the support model selected a robot which
should be taken over by the supervisor, and presented the selection to the supervisor.

The indicator for the chosen robot was a colored border around the window with the
chosen robot’s activity. The color of the border represented the level of trust the support
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model had in that robot. The border blended gradually between red (low trust), yellow
(medium trust) and green (high trust). The supervisor was instructed to consider the robot
that was selected by the support model. as the support model expected this robot to increase
team performance the most with a control shift.

The autonomy reasoner in the support model was configured to always select a robot.
This was done to keep supervisors involved in the operation. The trials were short, creating
the possibility that the supervisor would not receive advice during a whole trial. Because
the autonomy reasoner always had to select a robot, it was chosen to include the trust in the
selected robot in the presentation of the selection (see section 2.3).

Strong Adaptive Autonomy Under this setting, the support model selected a robot which
should be taken over by the supervisor. The supervisor was forced to comply with this
decision. The selected robot was indicated with a blue arrow.

4.3.2. Dependent variables

Team performance Three measures were used to calculate the performance of the
supervisor-robots team on the task.

The first measure was the number of bombs that was disarmed (hits). The number of
disarmed bombs should be maximized. The higher the amount of bombs disarmed by the
team, the higher the team’s performance was.

The second measure was the number of bombs that was set off (misses). The number
of bombs set off should be minimized. The lower the amount of bombs set off by the team,
the higher the team’s performance was.

The third measure combined the previous two measures. The z-scores of both the num-
ber of bombs disarmed and the number of bombs set off were calculated per condition. The
z-score of the number of bombs set off was then subtracted from the number of bombs dis-
armed, resulting in a normalized measure of performance per condition. The third measure
can be seen as a more objective measure than the first and second measures. Averaging the
performance values of all trials per condition resulted in mean performance values for each
condition.

Similarity of trust Trust was obtained in two forms: trust generated by the trust models
and trust estimates from the robot operators:

Each trial, the trust models in the support model generated eight sets of trust values:
trust in each of the four robot operators and four times trust in the supervisor.

Also during each trial, robot operator had to indicate their trust in themselves and in
their supervisor using on-screen slider controls (as shown at the bottom of figure 1.2(a)).
The slider controls had eleven-point scales. The participants were reminded every thirty
seconds with spoken text to update the sliders if they felt their trust had changed. This
resulted in eight pairs of trust datasets from each trial. The root mean square deviation
(RMSD) was calculated for the pairs of these datasets with the same trustee (the robot
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operator or the supervisor). This yielded two sets of RMSDs, one set for each trustee.

Agreement This shows how often the supervisor agreed with the support model by look-
ing at which robots the supervisor took control of and what the support model had advised
to take over (depending on the type of support).

5. Results

5.1. Removal of outliers

Out of the data from 28 supervisors, the data from 10 supervisors was removed because the
number of disarmed or exploded bombs was higher or lower than two standard deviations
from the mean performance.

5.2. Team performance

Team performance was calculated using three measures: the number of disarmed bombs
(hits), the number of exploded bombs (misses), and a normalized score.

The first measure was the number of disarmed bombs. Details of the four conditions
are given in table 1.4. The mean number of disarmed bombs per condition is shown in
figure 1.3(a). A repeated measures ANOVA showed no significant effect of condition on
performance, F(3,51) = 2.5, p = 0.0695. Paired sample t-tests indicated a significantly
higher performance under SAA compared to NS. This was not the case with TO and WAA.
The highest mean number of disarmed bombs was achieved under SAA.

The second measure was the number of exploded bombs. Details of the four conditions
are given in table 1.5. The mean number of exploded bombs per condition is shown in
figure 1.3(b). A repeated measures ANOVA showed a significant effect of condition on
performance, F(3,51) = 4.27, p = 0.0092. Paired sample t-tests indicated no significantly
higher performance under any of the conditions with support from the support model. The
lowest mean number of exploded bombs was achieved under SAA.

The third measure was the normalized score. Details of the four conditions are given
in table 1.6. The mean number of exploded bombs per condition is shown in figure 1.3(c).
A repeated measures ANOVA showed a significant effect of condition on performance,
F(3,51) = 5.12, p = 0.0036. Paired sample t-tests indicated a significantly higher perfor-
mance under SAA compared to NS. This was not the case with TO and WAA. The highest
mean normalized score was achieved under SAA.

The number of hits under SAA was significantly higher than the number of hits under
No Support (NS), while the application of Trust Overview (TO) and Weak Adaptive Auton-
omy (WAA) did not significantly improve performance. Based on the results, hypotheses
H1a and H1b are rejected, while hypothesis H1c is accepted. Furthermore, using each
of the three performance measures, the highest performance was achieved under Strong
Adaptive Autonomy (SAA). For this reason, hypothesis H2 is accepted.
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Table 1.4. Statistical reports on team performance as the
number of disarmed bombs per condition.

µ > µNS
Condition µ σ t df Sig.

NS 56.6111 7.9049 - - -
TO 55.8333 8.4523 -0.5416 17 0.7024
WAA 57.2778 6.4790 0.3816 17 0.3537
SAA 60.6667 9.2036 2.2886 17 0.0176

Table 1.5. Statistical reports on team performance as the
number of exploded bombs per condition.

µ < µNS
Condition µ σ t df Sig.

NS 9.4444 2.7912 - - -
TO 10.5000 2.9754 1.1703 17 0.8710
WAA 12.2778 2.9267 2.5543 17 0.9897
SAA 9.2222 2.6022 -0.2827 17 0.3904

Table 1.6. Statistical reports on team performance as nor-
malized scores per condition.

µ > µNS
Condition µ σ t df Sig.

NS 0.1818 1.2929 - - -
TO -0.2633 1.4930 -1.5267 17 0.9274
WAA -0.6735 1.3227 -2.0131 17 0.9699
SAA 0.7551 1.5399 2.0781 17 0.0266

The increased performance under SAA shows that the support model can make better
decisions on autonomy than human supervisors. This is supported by the performance
under TO and WAA. The high performance under SAA shows that the advice given by the
support model under TO and WAA was useful for basing decisions on.

5.3. Similarity of trust

As described in section 4.3.2, two times eight sets of trust values were collected each trial.
Two one-sample t-tests were conducted, comparing each set of RMSDs to a mean of 0.

There was a significant difference for both the trust in the robot (p = 0, a = 0.05) and the
trust in the supervisor (p = 0, a = 0.05).

Neither the trust of the supervisor and the trust models in the supervisor nor the trust in
the robot operators correlated between the trustors. Therefore, hypothesis H3 is accepted.



14 A. Toubman, P.-P. van Maanen, M. Hoogendoorn

5.4. Agreement

Each trial yielded two sets of data on the control of the robots: one set showing which
robots the support model had selected, and one set showing which robots the supervisor
actually took control of.

The agreement between the supervisor and the support model was calculated as Cohen’s
kappa for each trial except trials under Strong Adaptive Autonomy. This resulted in mean
kappas for No Support (µκ = 0.0622, σκ = 0.1371), Trust Overview (µκ = 0.1055, σκ =

0.1126), and Weak Adaptive Autonomy (µκ = 0.1216, σκ = 0.1424).
The agreement of the supervisor with the support model under NS, TO and WAA was

low by any standard. Therefore, hypothesis H4 is rejected. Apparently, the method used
by the supervisors to make decisions on the robots’ autonomy was very different from the
method used by the support model. A high agreement of the supervisors with the support
model would show that the support model used a method comparable to the method used
by the supervisors. However, this is clearly not the case.
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Fig. 1.3. (a) Mean number of disarmed bombs per condition. (b) Mean number of exploded bombs per condition.
(c) Mean normalized team scores per condition.
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6. Discussion

The main goal of this study was to find out if support from a support model that uses trust
models would increase team performance in the case of a human supervisor monitoring
multiple robots. Trust models have previously been used to provide support in different
settings, but results have varied (Van Maanen et al., 2007, 2011). In this study, a clear
positive effect was found.

The most interesting result is that team performance was the highest under SAA. Ap-
parently, the support model made better decisions on the LOAs of the robots than the human
supervisors did. This result is coherent with the low agreement that was found between the
supervisors and the support model, and also with the low correlation in trust.

One explanation for the higher performance under SAA is computational power. While
the support model can monitor the robots and the supervisor without error, human supervi-
sors have a limited attention capacity, meaning they may have missed or wrongly attributed
events such as disarmaments of bombs, explosions, and changed situations. The wrong
attribution of events could be explained with Weiner’s attribution theory (Weiner, 1985).
Supervisors may have attributed their own successes to skill, while attributing the robots’
successes to luck. The support model made objective observations of the robots and the
supervisors, leading to better decisions.

The low agreement of the supervisor with the support model’s advice under the TO and
WAA conditions can be regarded as under-reliance. Under-reliance remains a problem in
the field of human-machine interaction (Parasuraman and Wickens, 2008). Several factors
could have contributed to the supervisors’ under-reliance on the support model. Among
these factors are an inadequate understanding of the method used by the support model to
select robots, and the inability to access the raw information which the support model uses
as input.

It should be noted that the configuration of the support model, which forced it to contin-
uously select robots to prevent underload, may have influenced the supervisors’ reliance on
the advice under WAA. The selection of robots which were not in actual need of a control
shift based on their predicted performance, may have been perceived by the supervisors
as false alarms. In short, agreement under WAA may have been higher if the continuous
selection of robots was disabled.

Some comments can be made on the inner workings of the support model. One such
comment is about the used paradigm that positive experiences increase trust, and negative
experiences decrease trust. Falcone and Castelfranchi (2004) call this view naive and not
useful for artificial systems, because it is unable to attribute successes and failures to their
proper causes. They note, however, that such a view cannot be avoided if the trust is
modelled as a simple number. In the trust models used in the support model, trust was
indeed modelled as a simple number. By using multiple trust models, the support model
did avoid the naive view on attribution.

Another comment that can be made is that the values of the support model’s parameters
used in the implementation were chosen manually. Tuning the parameters may lead to even
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higher performance using the support model. Parameter tuning could be done offline before
operation, but future research may also bring effective online parameter tuning techniques.
This way, the support model and the support it provides could be made more adaptive to
unknown and changing environments. The autonomy reasoner could also be made adaptive,
for example with the exploration and exploitation method described in (Hoogendoorn et al.,
2010).

The proposed support model showed promising results, especially when it was allowed
to make all LOA decisions. The support in the form of advice can be improved. Future
research should point out if the support model can be used effectively in different settings.

References

Falcone, R. and Castelfranchi, C. (2004). Trust Dynamics: How Trust Is Influenced by Direct Expe-
riences and by Trust Itself, in Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems - Volume 2, AAMAS ’04 (IEEE Computer Society,
Washington, DC, USA), ISBN 1-58113-864-4, pp. 740–747, doi:10.1109/AAMAS.2004.286,
URL http://dx.doi.org/10.1109/AAMAS.2004.286.

Hoogendoorn, M., Jaffry, S. W. and Treur, J. (2010). Exploration and Exploitation in Adap-
tive Trust-Based Decision Making in Dynamic Environments, Web Intelligence and Intelli-
gent Agent Technology, IEEE/WIC/ACM International Conference on 2, pp. 256–260, doi:
10.1109/WI-IAT.2010.199, URL http://dx.doi.org/10.1109/WI-IAT.2010.199.

van Maanen, P.-P., Klos, T. and van Dongen, K. (2007). Aiding Human Reliance Decision Making
Using Computational Models of Trust, , pp. 372–376doi:10.1109/WI-IATW.2007.108, URL
http://dx.doi.org/10.1109/WI-IATW.2007.108.

van Maanen, P.-P., Wisse, F., van Diggelen, J. and Beun, R.-J. (2011). Effects of Reliance Sup-
port on Team Performance by Advising and Adaptive Autonomy, in Proceedings of the 2011
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT-2011) (IEEE
Computer Society Press).

Parasuraman, R., Sheridan, T. B. and Wickens, C. D. (2000). A Model for Types and Levels of
Human Interaction with Automation, Systems, Man and Cybernetics, Part A: Systems and Hu-
mans, IEEE Transactions on 30, 3, doi:10.1109/3468.844354, URL http://dx.doi.org/

10.1109/3468.844354.
Parasuraman, R. and Wickens, C. D. (2008). Humans: Still Vital After All These Years of Au-

tomation, Human Factors: The Journal of the Human Factors and Ergonomics Society 50,
3, pp. 511–520, doi:10.1518/001872008X312198, URL http://dx.doi.org/10.1518/

001872008X312198.
Sabater, J. and Sierra, C. (2005). Review on Computational Trust and Reputation Models, Artif. Intell.

Rev. 24, pp. 33–60, URL http://portal.acm.org/citation.cfm?id=1057866.
Sheridan, T. B. and Verplank, W. L. (1978). Human and computer control of undersea teleoperators

(Man-Machine Systems Laboratory Report), .
Weiner, B. (1985). An Attributional Theory of Achievement Motivation and Emotion, Psychological

Review 92, 4, pp. 548–573, URL http://view.ncbi.nlm.nih.gov/pubmed/3903815.


