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Abstract. Automatically generating behavior for Non-Player Characters 

(NPCs) in serious games can be problematic as the specification of their behav-

ior heavily relies on the availability of domain expertise. This expertise can be 

difficult and costly to extract, and the specified behavior usually does not allow 

for generalization to new scenarios or users. Alternatively, behavior can be gen-

erated using a pure machine learning approach. However, such NPCs may 

quickly develop static, non-adaptive behavior by exploiting the environment 

without proper constraints. In this paper, an approach called Evolutionary Dy-

namic Scripting (EDS) is presented to effectively cope with the disadvantages 

of the two extremes sketched above. This technique combines the generative 

characteristics of an evolutionary approach with an adaptive reinforcement 

learning method called Dynamic Scripting. Dynamic Scripting essentially 

learns how to prioritize rules from a fixed rule-base specified by domain ex-

perts. EDS was tested in an air combat simulation in which agents co-evolve 

their tactics using EDS. EDS was able to generate improved behavioral rules 

over the original Dynamic Scripting approach, given the same initial rule-bases. 

Both generalization to new situations and specialization into roles for the agents 

were observed. 
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1 Introduction 

In the last decade, serious gaming approaches to (military) training applications have 

gained widespread popularity. Serious games have a number of benefits over ‘classi-

cal’ training, such as cost reduction, the possibility of training with more individual-

ized scenarios, and the ability to produce events that cannot easily be staged in real 

life.  

In many serious games, the behavior of the Non-Player Characters (NPCs) is of 

crucial importance. Whether filling the role of teammates, tutors, or adversaries, 
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NPCs should exhibit dynamic, adaptive behavior. However, generating such behavior 

often requires complex models based on expert knowledge (see e.g. [1]). Creating 

expert models for a sufficiently large number of training scenarios can be cumber-

some. As a result, these models often do not exhibit a sufficiently rich palette of be-

haviors, and hence result in a highly predictive learning experience. An alternative is 

to deploy machine learning to generate appropriate behavior models from scratch (see 

e.g. [2]). Still, guaranteeing dynamic behavior remains problematic. 

Several approaches that try to combine the best of both worlds have been proposed, 

among which the Dynamic Scripting (DS) technique [3]. DS is a reinforcement learn-

ing (RL) technique that starts with a set of generally applicable behavior rules provid-

ed by domain experts, and lets agents learn how to prioritize these rules for a specific 

scenario in a series of RL trials. Favoring adaptation speed over optimal performance, 

this method is not like traditional RL methods, which attempt to create a policy (a 

mapping of optimal actions to take given a situation). DS heavily relies on the as-

sumption that the initial rule set provides ‘good-enough’ rules for all possible scenari-

os, which might not always be the case as the need for additional rules might occur in 

novel scenarios. 

In this paper, a technique is presented which is called Evolutionary Dynamic 

Scripting (EDS). In EDS, the DS learning process is embedded in an evolutionary 

method which enables the discovery of new rules. In essence, DS serves as the fitness 

evaluation function for the evolutionary method. This combination allows for more 

flexibility in the generation of specific behavior for novel scenarios, while using more 

general rules designed by a domain expert as a starting point. This way, appropriate 

domain knowledge is utilized and new behavior is generated where it is shown to be 

effective, while reducing the workload of the domain expert. The approach is evaluat-

ed in an air combat simulation [4], as several DS case studies have already been per-

formed in this domain and can be used as a benchmark. 

This paper is organized as follows. Section 2 sketches the relevant background of 

this work. The EDS approach is described in Section 3 and the experimental setup is 

described in Section 4. Section 5 presents the results, and finally, Section 6 concludes 

the paper. 

2 Background 

A variety of techniques have been proposed that enable the generation of NPC behav-

ior based on domain expertise. Many of these techniques come in the form of cogni-

tive models that stem from human decision-making processes. These techniques 

mainly focus on the realism of the generated behavior. Swartout et al. [1] for example 

introduce an architecture for virtual reality-based training in which the virtual agents 

use task models to reason about causality and the distribution of tasks between human 

and virtual agents. In [5], Merk presents a number of cognitive models, addressing 

various aspects of fighter pilot behavior. These models were validated in evaluations 

in which fighter pilots received training in simulators using enemies driven by the 

cognitive models. Methods that are still cognitive-based but do add some anticipation 



 

 

elements include theory of mind based approaches (see e.g. [6] and [7]). However, 

these approaches all heavily rely on domain expertise.  

   On the other side of the spectrum, various approaches are based on pure machine 

learning techniques to establish adaptive NPC behavior. A complete overview of this 

domain is beyond the scope of this paper, but examples for the domain of fighter pilot 

behavior can be found in [2]. Bellotti et al. [8] introduce an agent based on machine 

learning that is able to adapt the flow of a serious game during play. 

   The current research is not the first attempt to combine expert knowledge with ma-

chine learning techniques. As said, the DS technique is based on the prioritization of 

rules depending on their appropriateness for the situation at hand. An alternative ap-

proach that has been proposed is to tailor a cognitive model to the situation at hand by 

means of adapting the parameters of the model, also allowing for a form of adaptation 

[9]. Although these techniques provide ways to adapt existing behavior to new scenar-

ios, they do so in a relatively limited way as they are based on existing rules. Generat-

ing new rules is the focus of the work presented here, thereby still taking advantage of 

information obtained from domain experts. An additional advantage of using and 

adapting behavior rules is that all NPC behavior is defined in a human-readable way. 

After the machine learning process, a domain expert or training instructor can always 

review the learned behavior and make manual changes, if needed. 

3 Method 

EDS attempts to improve NPC behavior by repeatedly evaluating the performance of 

an agent’s rules using DS, and evolving the evaluated rules using an evolutionary 

method based on genetic programming (GP). Implementing such a system has two 

major advantages. First, as with regular DS, the use of behavior rules provides trans-

parency throughout the learning process, as the behavior model is always human-

readable. Second, it decreases the need for a domain expert, since the evolutionary 

method is able to optimize existing rules, or even discover completely new rules. 

EDS can be classified as a specialized Learning Classifier System (LCS). LCSs at-

tempt "to evolve a system that will respond to the current state of its environment" 

[13]. An LCS is usually based on optimizing a policy, using a genetic algorithm (GA) 

and a reinforcement component. Instead of a GA, EDS uses GP and instead of tradi-

tional RL for the reinforcement component, EDS uses DS. EDS is thus able to use 

rule structures, rather than binary sequences. Moreover, it doesn’t necessarily have to 

create rules from scratch (such as the LCS used in [2]), but is able to optimize existing 

rules, which it can evaluate rapidly. 

The main EDS loop is shown in Algorithm 1. The algorithm is initialized with an 

initial rule base that is either predefined or generated from scratch. Then, the evolu-

tionary loop starts (lines 3). First, the fitness (or expected effectiveness) of each indi-

vidual rule is evaluated in the DS component (starting in line 4). In the DS compo-

nent, the rule base is optimized by DS, which results in a fitness value for each rule.  

The fitness may be revaluated multiple times at each generation (lines 4-6), allowing 

(weighted) averaging of a rule’s fitness values across multiple DS learning episodes, 



thereby increasing the robustness of EDS. Once the fitness is known and stored (line 

6), the GP component alters various rules in the rule base based on their fitness 

(shown in line 7). This constitutes one generation, after which the (new) rule base can 

again be evaluated using the DS component. This loop terminates when some termi-

nation condition is met (such as a maximum number of generations). 

 

 

3.1 Dynamic Scripting Component 

DS is a form RL which allows an autonomous agent to dynamically adjust its behav-

ior based on feedback from the environment [3]. DS was originally designed for com-

puter role-playing games, but it has since been adapted for usage in other genres such 

as real-time strategy games [10, 11], first-person shooters [12], and air combat simu-

lators [4]. DS is not like other RL methods because it requires predefined behavioral 

rules which are not modified during the learning process. While agents using DS are 

unable to find new behavior, it also guarantees that agents cannot learn behavior that 

is worse than the predefined rules. Another difference with DS and traditional RL is 

the fact that DS does not attempt to make a mapping between observed states and 

desired actions. This makes it easier for DS to (dynamically) adapt to new situations. 

Each agent using DS maintains a set of predefined rules in its rule base, together 

with a weight value for each rule. For every encounter, a subset of rules is stochasti-

cally selected from the rule base, directly proportional to the weight value for each 

rule.  

The selected rules form a script that is used to control the agent during an encoun-

ter. After each encounter, the DS algorithm adjusts each rule’s weight value based on 

the outcome of the encounter. If the rules in the script performed well during the en-

counter, their weights are increased; conversely, if the rules in the script performed 

badly during the encounter, their weights are decreased. The weight value of each rule 

therefore comes to represent the expected effectiveness of the rule against the current 

opponent(s). This redistribution of weights leads to reselection of favorable rules. 

After a sufficient number of encounters, we treat the weight of each rule as its fit-

ness value for use in the GP component. When evolving a large set of rules (as we are 

trying to accomplish with EDS), DS has the advantage of being able to evaluate sub-

sets of the rules in various specific circumstances. Which subsets are applicable under 

what circumstances is detected automatically by the DS algorithm. At the same time, 

because only one large set of rules is being evolved, it is possible to maintain a level 

of general applicability. 

Algorithm 1. EDS 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

rule_base ← initial_rule_base 

results ← array[max_episodes] 

for generation ← 1 to max_generation do // EDS loop 

    for episode ← 1 to max_episode do // DS loop 

        results[episode] ← perform_DS(rule_base) 

    fitness ← evaluate_fitness(result) 

    rule_base ← evolve(rule_base, fitness) // GP component 



 

 

3.2 Genetic Programming 

Component 

In the GP component (line 7 in 

Algorithm 1), the rule adapta-

tion takes place. Once the rules’ 

fitness values are known, we 

adapt the rules using evolution-

ary principles, i.e. offspring is 

created and survivors are se-

lected. The steps of the GP 

component are shown in Algo-

rithm 2. 

Parent selection (line 3) is done through fitness proportionate selection. Two par-

ents are selected per cycle. After selection, crossover is applied with a probability 

prob_crossover (lines 4-5), or else they are mutated (lines 6-7). Applying either muta-

tion or crossover (as opposed to both) is a common procedure for GP [13]. 

In lines 8-9, the newly generated children are inserted in the rule base. After adding 

a child, survivors are immediately selected. The rule with the lowest fitness value is 

deterministically removed. 

Genetic Operators 

To facilitate the use of genetic operators, the rules in the rule base are represented as 

tree structures. The crossover operator used is subtree crossover, which creates new 

children by randomly exchanging subtrees of two parents. Each of the subtrees is 

selected with a probability p = 1/n, where n is the number of expressions in the rule.  

 The mutation operator is one of three methods, chosen randomly (with equal prob-

abilities): point, subtraction, and addition mutation. In point mutation, each expres-

sion in a rule has a probability p = 1/n of changing to another random expression, 

where n is the number of expressions in the rule. Subtraction mutation randomly re-

moves an entire subtree from the rule. This subtree is selected identical to the afore-

mentioned crossover method. With equal probabilities, addition mutation either takes 

a subtree subtracted by a previously applied subtraction mutation, or randomly gener-

ates and adds a subtree to the rule. This random generation is done using a simple 

grammar in which all valid tree structures are expressed. This grammar prevents inva-

lid rules and erroneous combinations from being created, such as ‘fire a missile at an 

ally’. The choices made in the grammar are always made with equal probabilities.  

 After performing these steps, the contents of the rule base will have changed, 

meaning each rule’s fitness can be evaluated again using the DS component. This 

evaluation also includes existing rules that survived the previous generations.  

Algorithm 2 | evolve(rule_base, fitness) 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

child_num ← 0 

while child_num < max_children do 

    parents ← select_parents(rule_base, fitness)  

    if random() < prob_crossover then 

        children ← crossover(parents) 

    else 

        children ← mutate(parents) 

    for child in children do 

        rule_base ← survivors(rule_base + child) 

    child_num ← child_num + 2 

return rule_base 



 

Fig. 1. The two blues (left) try to 

intercept red (right), who is flying 

a Combat Air Patrol. 

4 Experimental Setup 

To investigate the proposed method from various angles, we split the experiments in 

three stages: rule base generation, validation, and generalization. These stages and the 

scenario in which they are applied are explained below. 

Scenario.  

A simulated scenario was used (identical to the scenario in [4]) in which two F-16 

aircraft (the blues), a ‘flight lead’ and a ‘wingman’, engage an enemy F-16 aircraft 

(the red). The latter is performing a so called Combat Air Patrol (CAP), i.e. repeatedly 

flying a circular pattern in the airspace that it needs to defend (see Figure 1). Each 

simulated encounter, the team that first eliminates an aircraft from the other team 

wins. The blue aircraft are controlled by agents whose rule bases are generated using 

the EDS approach. The red aircraft is controlled by an agent that uses one of six tac-

tics:  

 tdefault represents the default opponent’s tactic. Red 

flies a counter-clockwise CAP, and fires at enemies 

upon detection. 

 tevading is as tdefault, but includes evasive maneuvers. 

 tclose_range is as tdefault, but fires missiles from a shorter 

range. 

 tdefault_alt, tevading_alt, tclose_range_alt are as tdefault, tevading, 

tclose_range, respectively, but flies the CAP in a clock-

wise fashion.  

Rule Base Generation.  

In this experimental stage, EDS is applied to the rule bases of both blues, in an at-

tempt to generate new, improved rule bases. This experiment is meant to show that 

EDS can find rules that are competitive to rules provided by experts, provided that a 

reasonably rich initial rule base is present. For the used virtual environment, an Expert 

Rule Base (ERB) for each blue agent is available and known to be working well with 

respect to the described scenario. However, we cannot be sure whether these ERBs 

can be further improved by EDS (it may be the ERBs are already the best possible set 

of rules for this scenario, given that an expert has specified it). To be certain the initial 

rule bases are non-optimal, we weaken the ERBs with respect to their originals. This 

provides us with a Degenerated Rule Base (DRB) for each blue agent. 

Both agents’ DRBs are evolved concurrently against each of the opponent’s tactics. 

Each application of EDS is performed thirty generations, with ten DS learning epi-

sodes per generation, and fifty encounters per learning episode. Ten EDS applications 

are run per tactic of red. These parameters are based on prior tests. 

Each generation, each blue agent generates new rules based on old ones using the 

mutation operator only. This was empirically found to outperform the use of both 

crossover and mutation. This predominantly results in exploitation of the rule base 



 

 

(associated with mutation), as opposed to exploration (associated with crossover). 

When mutation is applied, one of the three mutation operators is randomly chosen.  

The performance of the blues in this phase is the ratio of blue wins with respect to 

the total number of performed encounters. 

Validation.  

The output of the rule generation phase is six sets of rule bases per blue agent (i.e. 

one per enemy tactic). Ideally, we would have a single rule base which is able to 

adapt to multiple tactics, the big advantage of regular DS. To achieve this, rules of the 

rule bases obtained from the previous section are combined so that we end up with a 

Combined Rule Base (CRB) for each blue agent, equal in size to the ERB and the 

DRB. The CRB is made by taking the inclusive disjunction of the each of the tactic’s 

best performing rule base from the previous section, ordered by fitness. This set is cut 

off at the correct rule base size mark (31 for the flight lead, 32 for the wingman). 

To validate whether EDS has had any significant impact on the blue’s rule bases, 

the performance of the DRB, ERB, and CRB against each of the six opponent’s tac-

tics are all measured using regular DS (since we just want to evaluate the performance 

of rule bases resulting from EDS). The significance of this comparison is as follows: 

if the CRB outperforms both other rule bases, we can conclude that the rules evolved 

by EDS in some way improved the behavior of the ERB, which was one of the goals 

of this research. We hypothesize that the CRB will outperform the DRB (hypothesis 

1), and perform at least as well as the ERB (hypothesis 2) when applying regular DS 

on either. Hypothesis 2 is a bit more conservative as ERB might already be (near) 

optimal. The blue agents are trained during 100 learning episodes against each tactic. 

Each learning episode simulates 250 encounters. During this stage, performance is 

measured as the running average of the current win ratio (window size 20), averaged 

over the 100 learning episodes. The large number of learning episodes is chosen to 

increase the likelihood of the hypothesized effect, given the stochastic nature of both 

the simulation environment and the DS/EDS techniques. 

Generalization.  

To study the generated rules’ ability to generalize, we combine CRBs using five 

out of the six evolved rule bases. This is done for each combination of five rule bases 

against its respective previously unseen tactic. For example, we can measure 

CRB~default’s performance (with the ~ representing ‘not’), consisting of all evolved 

rule bases except for the one evolved against tdefault, against tactic tdefault. As such, six 

partially combined rule bases CRB~n are generated per blue agent, where n indicates 

an adversary’s tactic. Generating a partially combined rule base is done in a fashion 

identical to how the CRB was generated. Similar to the previous experimental phase, 

each of these partially combined rule bases is then used for running DS against each 

tactic. Again, we apply 100 learning episodes, and 250 encounters per learning epi-

sode, where the performance is the running average of window size 20. We hypothe-

size that the regular CRB will outperform each CRB~n using regular DS for both cases 

(hypothesis 3), because it has complete knowledge of the current opponent’s tactic. 



5 Results 

Rule Base Generation.  

Figure 2 shows the average over ten EDS runs against each tactic. The runs against 

tclose_range and tclose_range_alt evidently perform much worse relative to the runs against the 

other four tactics. The average final performance per tactic is highest against tdefault_alt 

(0.728), followed by tevading (0.682), tevading_alt (0.629), tdefault (0.573), tclose_range_alt 

(0.116), and tclose_range (0.052).  

Figure 3 shows the best EDS run out of 10. The lines in the figure are smoothed us-

ing a running average with a window size of 3. tclose_range and tclose_range_alt are in fact 

able to reach a relatively high performance in a few cases. The best performance per 

tactic in the final generation is greatest against tevading_alt (0.956), followed by tevading 

(0.905), tdefault_alt (0.819), tdefault (0.771), tclose_range_alt (0.637), and tclose_range (0.506).  

The results show that EDS is able to generate rules of increasing quality against 

four out of six tactics. This is in line with the research reported in [4], where the blues 

 
Fig. 4. Average of 10 EDS runs for each 

tactic played against. 

Fig. 5. Best of 10 EDS runs for each tactic 

played against. 
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Fig. 2. Results of DS with various initial 

rule bases, averaged over all tactics, (100 

learning episodes per tactic). 

 

Fig. 3. Results of DS with fully and partial-

ly combined rule bases, averaged over all 

tactics (100 learning episodes per tactic). 
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against tclose_range and tclose_range_alt were found to perform worse when applying DS. 

This suggests that the close range tactics are simply more difficult to win against.  

When exploring the behavior exhibited by the newly generated tactics, a limited 

form of role specialization was observed. For example, one agent would behave as an 

engaging agent, with rules describing how to engage the opponent. Another agent 

behaved as an evading agent, with mostly rules of evasion. After the experiment, the 

engaging agent had many near-identical rules, e.g. a rule for firing missiles when no 

other missile is flying towards the target, and another for firing missiles only if the 

agent’s wingman has no missiles left. A similar situation held for the evading agent. 

This indicates a certain degree of convergence has taken place for these rule bases.  

Validation.  

The performances of DRB, ERB, and CRB have been averaged over the different 

opponent tactics. An independent two-tailed t-test assuming unequal variances (α = 

0.05) shows that the average performance after the final encounter of the CRB is sig-

nificantly higher than both DRB (p << 0.05) and ERB (p << 0.05) performances, as 

suggested in Figure 4. This confirms hypothesis 1 and 2, suggesting the CRB (and 

thus EDS) make a significant contribution to the scenario. Additionally, the ERB and 

DRB performances do not differ significantly from each other (p = 0.513). 

Generalization.  

To investigate generalizability, again the performances for all tactics are averaged, 

providing us with results for which the relevant adversary tactic was used during the 

learning process to form the rule set (fully combined), and results for which it was not 

(partially combined). A two-tailed t-test assuming unequal variances (α = 0.05) shows 

there is no difference in performance (p = 0.086), as Figure 5 suggests. Thus, hypoth-

esis 3 is rejected, suggesting a certain measure of redundancy was introduced when 

evolving rule bases against different tactics. Finally, the graphs in Figure 4 and Figure 

5 stabilize at the 0.5-mark. This is likely due to chance; the red and blue team setups 

are different from one another. Slight changes would quickly shift this equilibrium. 

6 Conclusion 

Though NPCs are rapidly becoming more intelligent, there is still a long way to go 

before they can match human intelligence. EDS attempts to partially bridge this gap 

by focusing on the adaptivity by evolving rule bases, while at the same time reducing 

the required domain knowledge. We investigated whether EDS could be an improve-

ment relative to DS in terms of behavior, domain expertise, and generalization. 

We showed that EDS is able to generate improved behavior. Simpler and some-

times more specialized rules were found. This suggests that EDS may be able to re-

duce the workload of domain experts, since they no longer have to focus on creating 

different roles for NPCs; they can simply design a generic set of rules, after which 



EDS automatically assigns certain roles to certain NPCs. Whether the observed gen-

eralizability of the rules also holds in other scenarios should be investigated.  

Regarding future work, there are a number of improvements and interesting possi-

bilities left to explore. First, the realism of the behavior in the system needs to be 

investigated. Second, generating rules from scratch as opposed to using a predefined 

rule base may create more diverse behavior. Finally, since a rule’s fitness is evaluated 

in the context of script and not in isolation, it is worthwhile to investigate how to in-

corporate rule’s interactions with each other when assigning fitness values. 
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